
2025/10/29 11:36 1/6 Summary

MIDIbox - http://wiki.midibox.org/

Summary

This page is to describe the operation of the MB808 Sequencer application. It is a work in progress,
comments are welcome and usually appreciated :)

Forum Thread: http://www.midibox.org/forum/index.php?topic=7391.0

This document is split into 3 sections:

Application Summary
Operation Manual
Technical details

Application Summary

This application is not meant to be part of a modular system or even a standalone box, it's origins are
a simple adaptation of the MBSEQ v2.4 application to mimic to functionality of the original 808's
digital section. As such the primary task for this application is to provide 13 editable tracks to cover
the 12 instruments + accent data and to create the proper pulse signals for the inputs of the
instruments. However, MBSEQ v2.4 is a very deep application and it would be a shame to ignore
many it's features so the primary task is to create an interface using the available buttons and
encoders that can access as many menu functions as possible, without making the whole thing
obscure. Remember, this is a drummachine first, sequencer second :)

Features

This is a list of planned features. Certian to be changed over time.

Standard 16 step editing format. Accent on it's own “track”.
Variable pattern length from 1-32 steps
Pattern chains can be created in song mode
All track parameters available to the SEQ V2.4 application in drum mode will be available. The
plan is to support all track parameters of SEQ v3
Edit mode can be toggled on and off in realtime
Song mode will be as robust as the interface allows
Support for LCD's will be kept in software
8 banks with 8 patterns each
Each pattern will have A and B variations that can be switched between or morphed between
with dedicated controlls
Save, Copy, Paste and Clear operations. One level of undo would be sweet.

Theory of operation

The MB808 application will essentially be unchanged from the SEQ v2.4 application. The changes that
will be made reguard the interface, specifically the LCD screen and encoders will not be present. At

http://www.midibox.org/forum/index.php?topic=7391.0


Last update: 2006/10/15 09:35 mb808 http://wiki.midibox.org/doku.php?id=mb808&rev=1156901926

http://wiki.midibox.org/ Printed on 2025/10/29 11:36

this time I also think it is best to use TK's drummode for the operation of the sequencer. Although this
prevents each step from having it's own flam value, what we gain is much more than what we loose.
Firstly using drum mode gives us 12 instrument tracks + accent all in one pattern as opposed to re-
working the handling of the pattern sets to allow the use of 12 complete tracks, this keeps things
compatible with the base application and hopefully with the upcoming SEQv3 application :) Using
drum mode also allows us to use the morph feature, but in a way that mimics the original 808. Each
pattern can be linked to the same pattern in the lowercase bank switched between like with the
“A+B” toggle switch on the original, my favorite feature. This will take a bit of trickery in code to keep
things compatible, so it may not be implemented in the first version. The second big advantage I
realized this morning while thinking about the Pro-1. It's sequencer was absolutely minimal, you just
switched into edit mode and entered notes until the phrase was entered. No rests. The Pro-1 would
then play it back, automatically looping it. I realized that with the extra tracks avaiable and using the
arrpegiate mode along with the step edit mode the mb808 could also sequence basslines and trigger
arrpegios! This is very cool!

Description of the interface

There are 35 elements to the MB808 interface. They are:

16 GP buttons
4 Menu buttons (m1 - m4)
4 Mode buttons (Song, Pattern, Mute, Edit)
5 Transport controls (Play, Stop, Fwd, Rwd, Loop)
2 Control buttons (Select, Exit)
Instrument Encoder
Tempo encoder
Swing/Morph pot
Datawheel

Operation Manual

NOTE: this is still a hypothetical interface. The changes reguarding V3 are not represented here and
this is really just to show how the F buttons can be used as menu buttons to reduce dependancy on
an LCD screen.

Modes of operation

The MB808 application has 5 different modes that it can operate in, they are:

Song Play
Song Edit
Pattern Play
Pattern Edit
Mute

In each mode the 16 GP buttons have a different function and each mode has it's own set of menus



2025/10/29 11:36 3/6 Summary

MIDIbox - http://wiki.midibox.org/

accessed with the menu buttons. The operation of the 16 GP's for each mode and menu are described
below

Pattern
Play
GP# GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10 GP11 GP12 GP13 GP14 GP15 GP16

Default Bank 1 Bank 2 Bank
3 Bank 4 Bank

5
Bank
6

Bank
7

Bank
8

Pattern
1

Pattern
2

Pattern
3

Pattern
4

Pattern
5

Pattern
6

Pattern
7

Pattern
8

F2 Forward Backward Ping
Pong Random BPM

/ 1
BPM
/ 2

BPM
/ 4

BPM
/ 8

BPM /
16

BPM /
32 BPM / 64

Pattern
Edit
GP# GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10 GP11 GP12 GP13 GP14 GP15 GP16

Default Step 1 Step 2 Step
3 Step 4 Step

5
Step
6

Step
7

Step
8

Step
9

Step
10

Step
11

Step
12

Step
13

Step
14

Step
15

Step
16

F1 BD SD LT/LC MT/MC HT/HC CP MA RS/CL CB CY OH CH Control
1

Control
2

Control
3

Control
4

F2 Forward Backward Ping
Pong Random BPM /

1
BPM
/ 2

BPM
/ 4

BPM /
8

BPM
/ 16

BPM
/ 32

BPM
/ 64

Song
Play
GP# GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10 GP11 GP12 GP13 GP14 GP15 GP16

Default Song 1 Song 2 Song 3 Song 4 Song 5 Song 6 Song 7 Song 8 Song 9 Song
10

Song
11

Song
12

Song
13

Song
14

Song
15

Song
16

F1 Position
1

Position
2

Position
3

Position
4

Position
5

Position
6

Position
7

Position
8

Position
9

Position
10

Position
11

Position
12

Position
13

Position
14

Position
15

Position
16

Song
Edit
GP# GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10 GP11 GP12 GP13 GP14 GP15 GP16

Default Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 Bank 8 Pattern
1

Pattern
2

Pattern
3

Pattern
4

Pattern
5

Pattern
6

Pattern
7

Pattern
8

F1 Position
1

Position
2

Position
3

Position
4

Position
5

Position
6

Position
7

Position
8

Position
9

Position
10

Position
11

Position
12

Position
13

Position
14

Position
15

Position
16

F2 Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8
Mute
Play
GP# GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10 GP11 GP12 GP13 GP14 GP15 GP16

Default BD SD LT/LC MT/MC HT/HC CP MA RS/CL CB CY OH CH Control
1

Control
2

Control
3

Control
4

F1 Group
1

Group
2

Group
3

Group
4

Group
5

Group
6

Group
7

Group
8

Group
9

Group
10

Group
11

Group
12

Group
13

Group
14

Group
15

Group
16

Global
Functions
GP# GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10 GP11 GP12 GP13 GP14 GP15 GP16

F3 Bank
1

Bank
2

Bank
3

Bank
4

Bank
5

Bank
6

Bank
7

Bank
8

Pattern
1

Pattern
2

Pattern
3

Pattern
4

Pattern
5

Pattern
6

Pattern
7

Pattern
8

F4 Next
bar

Next
quart.

Next
8th Next 16th Clear

Patt
Clear
Track

Copy
Track

Copy
Patt Paste Save MIDI SysEx

Button Loop Fwd Rwd Stop Play Tap Ins. Select Datawheel
Pattern Play Set loop points Next MetaBank Prev MetaBank Stop Play Tap Ins. Select
Pattern Edit Set loop points Next Bar Prev Bar Stop Play Audition Ins Select Meter
Song Play latch loop Next Pos. Prev Pos Stop Play Tap Ins. Select
Song Edit Jump point Next MetaBank Prev MetaBank Stop Play Tap Ins. Select



Last update: 2006/10/15 09:35 mb808 http://wiki.midibox.org/doku.php?id=mb808&rev=1156901926

http://wiki.midibox.org/ Printed on 2025/10/29 11:36

Technical Details

There are 3 main components to this modification:

The sequencer needs to output 1ms active high pulses to the gate inputs of the 12 instruments
and a 1ms active low pulse to the common trig circuitry which creates the accent signal.
The interface needs to be modified so that the LCD and datawheel are not neccessary
Special functions need to be added to the application to steamline operation

Connecting with the analog circuits

The 808's instruments are all comprised of a combination of twin-t oscillators, a noise source and
simple VCA's. Both the twin-t and the envelope take a breif pulse of varying amplitude to trigger and
set the amplitude and each of the 808's instruments have a AND gate made up of 2 transistors to
interface with the digital controller. These AND gates have inputs for 2 signals, called common trig
and instrument data. Each instrument has it's own data line but there is only one common trig which
is shared by all instruments. The common trig signal is active high for 1ms in synchronization with the
master clock. Each instrument data signal is a 5v active high 1ms pulse which is only present when
that instrument should be triggered. The AND gate insures that both signals are present before
sounding an instrument. Creating the instrument data signal is easy using MB hardware, a DOUT pin
does the job nicely. Altering the code to flash a DOUT pin on a note event is fairly simple as well. The
common trig signal is a little more complicated. The accent data, which is a voltage between 5v and
15v is also represented in the common trig signal. As such it is the pulse present on the common trig
input that triggers the instrument while the instrument data signal insures the instrument is only
triggered at the right step. Luckily the accent signal only needs two states, on and off, where off is
always 5v and on is a higher voltage determined by a potentiometer. Now, this could be be done with
a logic switch like the 4016 or 4066, using a DOUT pin to toggle between connecting the common trig
line to 5v or the wiper of the accent pot. However, looking over the schematics I've found an even
simpler way that only needs a couple transistors. The concept is simple, we still use a pot connected
as a voltage divider between the 5v and 15v rails to get our accent voltage but a simple transistor can
be used to shunt the voltage of the wiper to the 5v rail when it is turned on. If we invert the common
trig signal in code so that it is active low we only need the single transistor ;) It should be noted that
the original schematic has 2 47uF capacitors as local resoviors for the common trig line. Testing on
the beta unit showed that the current draw on the common trig line could sometimes be high enough
that these caps are needed to keep the voltage from sagging.

Now, in the original, the common trig pulsed on every clock tick. This isn't neccessary, instead the
common trig line will only be pulsed when a note on occurs.

Modifying the interface

In order to get the most out of the SEQ application without using a datawheel or an LCD and without
risking becoming totally incompatible with future versions I decided it was best to use the 4 function
buttons as menu buttons to modify the action of the GP's. In order to do this I need to modify the code
in each of the “F” buttons handlers. These can be found starting on line 681 of seq_buttons.inc. First I
cleared out the code that was in there. Now, the simplest way to do this is to set a bit representing
when one of the menu buttons is pressed. Since I want them all to be momentary I can then simply



2025/10/29 11:36 5/6 Summary

MIDIbox - http://wiki.midibox.org/

clear the bit when the button is released. Code will be needed to be sure that only one bit is set at a
time as it makes no sense to edit multiple menu's at once. Now, in order to turn these button presses
into additional menu shortcuts the operation of the GP's need to be overloaded with 4 additional
cases represented by the bits in the “current_menu” register. Since the operation of the GP buttons
and the menus is not exactly straight forward care needs to be taken so that the normal operation of
the SEQ application is not interrupted. SO, how, exactly do the GP menu shortcuts work?

Once a DIN event has been determined to have come from one of the two SR's assigned to be
the GP buttons SEQ_GP_Button [21] is called.
In SEQ_GP_Button [21] the application can branch to 3 different places.
If Menu mode is active (the menu button is pressed) than the app branches to
SEQ_GP_Mode4_Button [240]

This is done using one of TK's macros: “BIFSET” which checks if a specified bit in a specified register is
set and then branches to a specified function if it is. The register is SEQ_MODE0, the bit for Menu
mode is SEQ_MODE0_MENU. The line of code: BIFSET SEQ_MODE0, SEQ_MODE0_MENU, BANKED,
rgoto SEQ_GP_Mode4_Button. The functionality we want to add is very similar to the Menu
shortcut mode, but lets not jump there just yet, there is more to learn right here.

SEQ_GP_Button then checks to see if a “callback hook” has been installed. I am not 100% clear
on the function of the callback hook, but if it is not installed the application will end up
branching to either Step edit mode or song mode.
If the hook has been installed than the application branches to
CS_MENU_ExecMenuGPCallbackHook [502]
Once the application has branched to this point the program flow becomes harder to read, so
we are going to start with a higher level analysis of how the menus are mapped and how
parameters are accessed, edited and stored.
Those who have worked with modern GUI programming are probably familiar with the event
driven model for creating an interface. At this point it is unclear to what extent the SEQ's
menu's can be considered event driven, but it is probably best not to try squeezing them into
that mold as there are some important differences.
The menus are implemented through a table of function pointers that are retrived through an
index which is determined by the context of the mode and GP button number. You can see the
menu tables in cs_menu_tables.inc

Spend some time reading that file until you get a grasp of it's premise. Menus are created and
navigated by indexing through a matrix of function pointers. Take note of some parameters from
cs_menu.inc:

CS_MENU_CURSOR_POS

Let's allow that to sink in for awhile.

Next we want to know how parameters are modified. From the operation of the SEQ we know
that the navigation functions (Right, Left, Datawheel, Select, Exit) are used to select a
parameter within a menu and then the Datawheel and Right/Left buttons can increment it's
value. Browsing through cs_menu.inc we can find the following three functions which sum up
these operations:

CS_MENU_Left [313]
CS_MENU_Right [320]
CS_MENU_Enc [328]

Each one of these functions places a value in WREG (CS_MENU_Enc already has the encoder



Last update: 2006/10/15 09:35 mb808 http://wiki.midibox.org/doku.php?id=mb808&rev=1156901926

http://wiki.midibox.org/ Printed on 2025/10/29 11:36

direction in WREG) and then calls CS_MENU_AddMenuParameter [573]. From the comments:

————————————————————————– ;; This function adds WREG to
CS_MENU_PARAMETER_[LH] and saturates ;; if the max value has been reached ;;
IN: add value in WREG ;; OUT: result in CS_MENU_PARAMETER_L ;; branches to
menu parameter hook and requests screen update ;; ————————————————————————–

From:
http://wiki.midibox.org/ - MIDIbox

Permanent link:
http://wiki.midibox.org/doku.php?id=mb808&rev=1156901926

Last update: 2006/10/15 09:35

http://wiki.midibox.org/
http://wiki.midibox.org/doku.php?id=mb808&rev=1156901926

	Summary
	Application Summary
	Features
	Theory of operation
	Description of the interface

	Operation Manual
	Modes of operation

	Technical Details
	Connecting with the analog circuits
	Modifying the interface


