2024/06/30 19:02 1/2 softwareoverview

Language and development environment:

MIOS and it's applications run on the PIC series of processors. Applications may be written in C or
assembly. The MBMixer is written in assembly, as that is the language | am most comfortable with.
During development of the MBMixer, a new development environment was announced for MIOS, that
uses GCC and SDCC instead of the MPLAB package supplied by Microchip. | may move the code over
to the new environment at some time, but for this release, | am still working inside MPLAB for
development.

Code Structure:

The purpose of the code is to receive and organize MIDI control events, and convert them to gain
settings for the channel boards. | designed the code to work between two memory tables. One
records the MIDI control data for the current board, organized by channel. The second memory table
holds the gain settings to be sent to the array of PGA chips that control volume. Between them, of
course, are the calculations that describe how the board will behave. The table of MIDI control data is
labeled MIDI1. Within the table are MIDI2, MIDI3 etc. All the way to MIDI16, but MIDI1 and occasionally
MIDI9 are the only labels referenced by the program. Each of these channels has eight bytes of space
reserved for use. Six of the eight bytes are currently used, described as follows:

MIDI1 + 0: Flags, each bit controls an on/off condition, as described below.
MIDI1 + 1: Volume. Data value 0-127.

MIDI1 + 2: Expression. Data value 0 - 127.

MIDI1 + 3: Balance/Pan. Data value 1-64-127.

MIDI1 + 4: Effects Level 1. Data value 0-127.

MIDI1 + 5: Effects Level 2. Data value 0-127.

MIDI1 + 6: Not Used.

MIDI1 + 7: Not Used.

MIDI1 + 8 is the start of the next channel, MIDI2.

The Flags are described as follows:

Bit O: if SET Effects 1 is “Pre-Fader”, if cleared Effects 1 is “Post-Fader”.
Bit 1: if SET Effects 2 is “Pre-Fader”, if cleared Effects 2 is “Post-Fader”.
Bit 2: if SET Effects 1 muted.

Bit 3: if SET Effects 2 muted.

Bit 4: if SET this channel includes Effects Loops.

Bit 5: Not Used.

Bit 6: Not Used

Bit 7: Used internally to flag this channel as modified.

MIOS will call the USER_MPROC_NotifyReceivedEvent routine whenever a complete MIDI event is
received. This routine must sort the received control into the MIDI table described above. If any
change is made to a MIDI channel, bit 7 of that channels flags must also be set. After changes have
been made, the Mid2Gain routine from setlevels.inc is called, which scans the MIDI data tables, and
re-calculates all channels that have been modified. The results of Mid2Gain are stored in the
Channel_Gain table, starting at Channel_Gain_0. The math used to calculate each gain setting
depends on the current settings of Volume, Expression, Balance/Pan, Effectsl, Effects2, and the
master volume level, as well a all the flag settings for that channel. The last step for each gain setting
is to call “LogByte” from logbyte.inc, which will apply a log curve to the result. Once all the channels
have been recalculated, a call to PGA_SEND_GAIN from pga.inc will copy the data in the gain table out
to the PGA chips. Then the DISPLAY_UPDATE_REQ bit is set, so that the display will be updated the
next time around. Of course, there is more detail to it than that, but the overview should give you a
fair start into understanding the process. | have been careful to over comment my code, so that

MIDIbox - http://www.midibox.org/dokuwiki/



Last update: 2008/09/07 13:03 pga:softwareoverview http://www.midibox.org/dokuwiki/doku.php?id=pga:softwareoverview

people that are new to assembly would have a fair shot at understanding it.

From:
http://www.midibox.org/dokuwiki/ - MIDIbox

Permanent link:
http://www.midibox.org/dokuwiki/doku.php?id=pga:softwareoverview

Last update: 2008/09/07 13:03

http://www.midibox.org/dokuwiki/ Printed on 2024/06/30 19:02


http://www.midibox.org/dokuwiki/
http://www.midibox.org/dokuwiki/doku.php?id=pga:softwareoverview

