
2026/02/09 06:32 1/10 Using the PIC18F4620 or PIC18F4520

MIDIbox - http://wiki.midibox.org/

Using the PIC18F4620 or PIC18F4520

Historically, MIOS was developed to run on a core module stuffed with a PIC18F452. Recently, the
PIC18F4620 has become available. It is near code-compatible with the 452, but features a significant
increase in RAM/EEPROM/Codespace. See the PIC18F4620 page for details.

The following are intructions on converting old apps, and developing new apps, to run on the
PIC18F4620. Small changes to the procedure make it compatible with the PIC18F4520 also.

OS Layers

MIOS v1.9b or above is required. You will need to download the MIOS source from The uCApps.de
Download Page or Directly. I recommend checking the first link for the latest version, as the '4620 is
current in beta.

The Bootloader and MIOS recompile steps which follow should not be necessary for most cases of
'4620 use, as these components are now available precompiled and packaged in a zip file hosted on
uCApps.de Instructions follow for reference only, or for '4520 use.

Bootloader

Bootloader v1.2, which is packaged with MIOS v1.9 and up, will need to be recompiled as follows:

Extract the MIOS source files from the zip
Edit bootloader\main.asm
Change

#define PIC_DERIVATIVE_TYPE 0

To

#define PIC_DERIVATIVE_TYPE 1

Compile the project wiki link

Burn the hex file to the PIC wiki link

http://wiki.midibox.org/doku.php?id=mios_pic18f4620
http://www.ucapps.de/mios_download.html
http://www.ucapps.de/mios_download.html
http://www.ucapps.de/mios/mios_v1_9b_src.zip
http://www.ucapps.de/mios/mios_update_v1_9b.zip
http://www.ucapps.de/mios/mios_update_v1_9b.zip

Last update: 2006/10/15 09:35 using_pic18f4620 http://wiki.midibox.org/doku.php?id=using_pic18f4620&rev=1158572600

http://wiki.midibox.org/ Printed on 2026/02/09 06:32

MIOS

The MIOS Operating System itself must also be compiled, as follows:

Edit src\mios.h from the MIOS source files
Change

#define PIC_DERIVATIVE_TYPE 0

To

#define PIC_DERIVATIVE_TYPE 1

Compile the project wiki link
also see: Compiling the MIDIbox source on Linux - using GPASM (Linux, Mac) instead of MPLAB
(Windows)

Upload the hex file with MIOS Studio wiki link

Please note that the above instructions should work for PIC18F4520 also. The only difference is that
the PIC_DERIVATIVE_TYPE should be '2', not '1'. This stands for all of the following instructions.

Application Layer

Once your PIC18F4620 has the Bootloader burned onto it, and MIOS uploaded, you are ready to
upload your application. A few modifications may be required:

Migration

If you have an existing ASM-based application, which is designed for MIOS v1.8 or lower, then you will
need to migrate the application to support MIOS v1.9

Extract the 'migration' folder from MIOS source zip file
Overwrite the files contained in the source of your application.

Take note that this may overwrite customisations you have made to your application, so please take a
backup first, and a copy for comparison with the new files.

http://wiki.midibox.org/doku.php?id=compiling_the_midibox_source_on_linux

2026/02/09 06:32 3/10 Using the PIC18F4620 or PIC18F4520

MIDIbox - http://wiki.midibox.org/

ASM

If your application is either:

a freshly migrated application (as above)1.
a brand new ASM-based project based on a skeleton >= v1.92.
an ASM-based application which already requires MIOS v1.9 or greater (like MBSID v1.7303)3.

Then the following steps are required:

Edit mios.h in the source of your application
Change

#define PIC_DERIVATIVE_TYPE 0

To

#define PIC_DERIVATIVE_TYPE 1

Compile the project wiki link

Upload the hex file with MIOS Studio wiki link

C

If your application is C-based, then the following steps are required. Some are optional
recommendations, as noted.

Note on compile errors

When compiling your C-based application, you may see an error such as this:

Linking project
warning: processor mismatch in "_output\mios_wrapper.o"

This error is caused by SDCC compiling the application for the PIC18F452. Fortunately, the code is
compatible between the two chips, so this error can be ignored. Thanks to bill, for having the guts to
put the app on his PIC, and confirm that this was the case ;)

Last update: 2006/10/15 09:35 using_pic18f4620 http://wiki.midibox.org/doku.php?id=using_pic18f4620&rev=1158572600

http://wiki.midibox.org/ Printed on 2026/02/09 06:32

Header and Library

In the case that you should need to take advantage of the additional EEPROM on the newer PICs, the
following alterations to the library and header are necessary:

Edit pic18f452.c in the source of your application
Change

sfr at 0xfa9 EEADR;
sfr at 0xfab RCSTA;

To

sfr at 0xfa9 EEADR;
sfr at 0xfaa EEADRH;
sfr at 0xfab RCSTA;

Edit pic18f452.h in the source of your application
Change

extern __sfr __at 0xfa9 EEADR;
extern __sfr __at 0xfab RCSTA;

To

extern __sfr __at 0xfa9 EEADR;
extern __sfr __at 0xfaa EEADRH;
extern __sfr __at 0xfab RCSTA;

Note that the filenames stay as pic18f452.*, regardless of the PIC model we are actually using. For
our purposes, SDCC considers the '4620 to be the same as a '452.

C-Wrapper

The C-Wrapper will need to be edited as follows:

In the source of your application, edit mios_wrapper\mios.h
Change

#define PIC_DERIVATIVE_TYPE 0

To

#define PIC_DERIVATIVE_TYPE 1

If you want to use this function, you may want to apply a small fix to the DEC2BCD Helper:

2026/02/09 06:32 5/10 Using the PIC18F4620 or PIC18F4520

MIDIbox - http://wiki.midibox.org/

In the source of your application, edit mios_wrapper\mios_wrapper.asm
Change

global _MIOS_HLP_Dec2BCD

movwf MIOS_PARAMETER1 //Moves W (the low byte of the 16-bit
integer) into MIOS_PARAMETER1 - That ain't right. See below from the MIOS
Function Reference
movff FSR0L, FSR2L //These guys
movf PREINC2, W //Put the high byte in W. D'oh!
goto MIOS_HLP_Dec2BCD

To

global _MIOS_HLP_Dec2BCD //The low byte is already in W

movff FSR0L, FSR2L //These guys
movff PREINC2, MIOS_PARAMETER1 //Put the high byte in
MIOS_PARAMETER1. Yay!

goto MIOS_HLP_Dec2BCD

Linker Script

Modifications should be made to the linker script in order to take advantage of the additional
capabilities of the 4620/4520. If you are using a standard, PIC18F452-based application, these steps
should not be necessary. These procedures are intended for applications being developed which will
require the additional capabilities of the newer PICs.

Extend Codepage

Both the 4620 and 4520 have extended code memory. To utilise this fully, make the following
alterations:

In the source of your application, edit project.lkr
Change

CODEPAGE NAME=page START=0x3000 END=0x7FFF

To

CODEPAGE NAME=page START=0x3000 END=0xFFFF

If you are using a GLCD with your PIC18F4620 the GLCD Font of the MIOS will be overwritten by this
change though, as it lies in the range of 0x7C00-0x7FFF. There are two approaches to prevent this
(also see forum thread http://www.midibox.org/forum/index.php?topic=7540.0):

To leave out the Font space in the PIC´s code memory, change

http://www.midibox.org/forum/index.php?topic=7540.0

Last update: 2006/10/15 09:35 using_pic18f4620 http://wiki.midibox.org/doku.php?id=using_pic18f4620&rev=1158572600

http://wiki.midibox.org/ Printed on 2026/02/09 06:32

 CODEPAGE NAME=page START=0x3000 END=0x7FFF

To

 CODEPAGE NAME=page0 START=0x3000 END=0x7BFF
 CODEPAGE NAME=page1 START=0x8000 END=0xFFFF

or try this solution from TK:

copy the mios_glcd_font.inc file from the MIOS release into your application directory, rename it
to mios_glcd_font.asm
add following code to the file header:

 LIST P=PIC18F4620, R=DEC
DEFAULT_FONT code
FONT_ENTRY MACRO width, height, x0, char_offset
 dw ((height) << 8) | (width), ((char_offset) << 8) | (x0)
 ENDM

change the “org” (start address) from 0x7cfc to 0xfcfc
add a “END” at the file footer
add the new .asm file to the MAKEFILE.SPEC (behind the MK_SET_OBJ statement)
change the font pointer within the Init() routine:

void Init(void)
{
MIOS_GLCD_FontInit(0xfcfc);
}

if you are working under MacOS or Linux, type “perl tools/mkmk.pl MAKEFILE.SPEC; make”,
under DOS just type “make”

The first approach has the advantage, that it isn't required to upload the font again and again with
each program update. The second approach that new fonts can be inserted into the project in a
similar way. Please see the forum article mentioned above on instructions how to use labels in
combination with fonts.

Add Databanks

In order to give our application the ability to recognise all that lovely, lovely RAM in the newer '4620
and '4520 PICs, one or a mixture of the following options is required:

Standard Bank Size

In the source of your application, edit project.lkr
Change

DATABANK NAME=miosram_u START=0x380 END=0x5FF PROTECTED

2026/02/09 06:32 7/10 Using the PIC18F4620 or PIC18F4520

MIDIbox - http://wiki.midibox.org/

ACCESSBANK NAME=accesssfr START=0xF80 END=0xFFF PROTECTED

To

DATABANK NAME=miosram_u START=0x380 END=0x5FF PROTECTED
DATABANK NAME=gpr6 START=0x600 END=0x6FF
DATABANK NAME=gpr7 START=0x700 END=0x7FF
DATABANK NAME=gpr8 START=0x800 END=0x8FF
DATABANK NAME=gpr9 START=0x900 END=0x9FF
DATABANK NAME=gpr10 START=0xA00 END=0xAFF
DATABANK NAME=gpr11 START=0xB00 END=0xBFF
DATABANK NAME=gpr12 START=0xC00 END=0xCFF
DATABANK NAME=gpr13 START=0xD00 END=0xDFF
DATABANK NAME=gpr14 START=0xE00 END=0xEFF
DATABANK NAME=gpr15 START=0xF00 END=0xF7F

ACCESSBANK NAME=accesssfr START=0xF80 END=0xFFF PROTECTED

Extended Bank Capacity

The above change will enable SDCC to allocate the variables in your application to any of the
specified banks above. The very observant among you may have noticed that these banks are 256
bits each…. So what happens if you want to use a variable which is greater than 256 bits in size, such
as a large array, or string of characters? For this, you will need to create a bank of extended size, and
you will need to direct your application to use that bank to store your large variable.

In order to create memory banks of extended capacity, it is necessary to section off a greater range
than those given above. A good way to go about this is to combine two or more of the default banks.
The following are examples of this.

Making a single, 512-bit bank:

DATABANK NAME=miosram_u START=0x380 END=0x5FF PROTECTED
// DATABANK NAME=gpr6 START=0x600 END=0x6FF
// Remove this bank
// DATABANK NAME=gpr7 START=0x700 END=0x7FF
// And remove this bank
DATABANK NAME=gpr67 START=0x600 END=0x7FF
// And create this one out of the two
DATABANK NAME=gpr8 START=0x800 END=0x8FF
DATABANK NAME=gpr9 START=0x900 END=0x9FF
DATABANK NAME=gpr10 START=0xA00 END=0xAFF
DATABANK NAME=gpr11 START=0xB00 END=0xBFF
DATABANK NAME=gpr12 START=0xC00 END=0xCFF
DATABANK NAME=gpr13 START=0xD00 END=0xDFF
DATABANK NAME=gpr14 START=0xE00 END=0xEFF
DATABANK NAME=gpr15 START=0xF00 END=0xF7F

Last update: 2006/10/15 09:35 using_pic18f4620 http://wiki.midibox.org/doku.php?id=using_pic18f4620&rev=1158572600

http://wiki.midibox.org/ Printed on 2026/02/09 06:32

ACCESSBANK NAME=accesssfr START=0xF80 END=0xFFF PROTECTED

Note that the START of the bank is the same as the START of the first bank removed, and the END of
the bank, is the same as the END of the last bank removed.

This can be extended into larger ranges, and multiple customised ranges, as below:

DATABANK NAME=miosram_u START=0x380 END=0x5FF PROTECTED
// DATABANK NAME=gpr6 START=0x600 END=0x6FF
// Remove this bank,
// DATABANK NAME=gpr7 START=0x700 END=0x7FF
// And remove this bank,
DATABANK NAME=gpr67 START=0x600 END=0x7FF
// And create this 512-bit bank out of the two 256-bit banks.
DATABANK NAME=gpr8 START=0x800 END=0x8FF
DATABANK NAME=gpr9 START=0x900 END=0x9FF
DATABANK NAME=gpr10 START=0xA00 END=0xAFF
// DATABANK NAME=gpr11 START=0xB00 END=0xBFF
// Remove this bank,
// DATABANK NAME=gpr12 START=0xC00 END=0xCFF
// And remove this bank,
// DATABANK NAME=gpr13 START=0xD00 END=0xDFF
// And remove this bank,
// DATABANK NAME=gpr14 START=0xE00 END=0xEFF
// And remove this bank!
DATABANK NAME=gpr1114 START=0xB00 END=0xEFF
// And create this 1024-bit (1 Kilobit) bank out of the four 256-bit banks.
DATABANK NAME=gpr15 START=0xF00 END=0xF7F

ACCESSBANK NAME=accesssfr START=0xF80 END=0xFFF PROTECTED

Or of course you could make the whole lot into one bank if you wanted to:

DATABANK NAME=miosram_u START=0x380 END=0x5FF PROTECTED
DATABANK NAME=gpr615 START=0x600 END=0xF7F
// That's almost 2.5kilobits!!

ACCESSBANK NAME=accesssfr START=0xF80 END=0xFFF PROTECTED

Add Sections

In order to assist in the use of these memory banks, we can give create 'sections' with names, and
those names can be referenced in our code later on. I will use the 2nd example above, to
demonstrate:

2026/02/09 06:32 9/10 Using the PIC18F4620 or PIC18F4520

MIDIbox - http://wiki.midibox.org/

DATABANK NAME=miosram_u START=0x380 END=0x5FF PROTECTED

DATABANK NAME=gpr67 START=0x600 END=0x7FF
// And create this 512-bit bank out of the two 256-bit banks.
DATABANK NAME=gpr8 START=0x800 END=0x8FF
DATABANK NAME=gpr9 START=0x900 END=0x9FF
DATABANK NAME=gpr10 START=0xA00 END=0xAFF

DATABANK NAME=gpr1114 START=0xB00 END=0xEFF
// And create this 1024-bit (1 Kilobit) bank out of the four 256-bit banks.
DATABANK NAME=gpr15 START=0xF00 END=0xF7F

ACCESSBANK NAME=accesssfr START=0xF80 END=0xFFF PROTECTED

SECTION NAME=CONFIG ROM=config
// This SECTION entry will already exist in the file. Do NOT alter this
line!

SECTION NAME=gpr8 RAM=gpr8
// This creates a SECTION called 'gpr8' which references the normal 256-bit
bank 'gpr8'
SECTION NAME=b512 RAM=gpr67
// This creates a SECTION called 'b512' which references our 512-bit bank
SECTION NAME=b1024 RAM=gpr1114
// This creates a SECTION called 'b1024' which references our 1kb bank

You may create as many or as few sections as you require for your application.

Application Code

Once these sections are created, you can use them within your application, by forcing a variable to be
stored within that section. This is done using the 'udata' pragma statement with the following syntax:

 #pragma udata section_name variable_name

For example, referencing the above section:

#pragma udata b512 MIDI_Table // This means "store a variable named
'MIDI_Table' in the SECTION named 'b512'
unsigned int MIDI_Table[512]; // Declare the array named 'MIDI_Table',
and now it will be stored in 'b512'

Compile the project wiki link

Last update: 2006/10/15 09:35 using_pic18f4620 http://wiki.midibox.org/doku.php?id=using_pic18f4620&rev=1158572600

http://wiki.midibox.org/ Printed on 2026/02/09 06:32

Upload the hex file with MIOS Studio wiki link

Still reading? Shouldn't you be writing code right now? ;)

From:
http://wiki.midibox.org/ - MIDIbox

Permanent link:
http://wiki.midibox.org/doku.php?id=using_pic18f4620&rev=1158572600

Last update: 2006/10/15 09:35

http://wiki.midibox.org/
http://wiki.midibox.org/doku.php?id=using_pic18f4620&rev=1158572600

	Using the PIC18F4620 or PIC18F4520
	OS Layers
	Bootloader
	MIOS

	Application Layer
	Migration
	ASM
	C
	Note on compile errors
	Header and Library
	C-Wrapper
	Linker Script
	Extend Codepage
	Add Databanks
	Standard Bank Size
	Extended Bank Capacity

	Add Sections

	Application Code

