
2024/04/29 20:11 1/4 Arithmetic Calculations

MIDIbox - http://wiki.midibox.org/

Arithmetic Calculations

Avoid using multiplications and divisions whenever possible. These complex mathmatic
calculations need a lot processing power and (what's even worser) a huge library to be
compiled at all.
If you need to multiply with and divide through even numbers like 2, 4, 8, 16, 32 … you can
make use of the bitshifting operators “»” and “«”

char c;
c = 12 >> 1; // c is 6 (division through 2)
c = 12 >> 2; // c is 3 (division through 4)
c = 12 << 1; // c is 24 (multiplication by 2)
c = 12 << 2; // c is 48 (mulitplication by 4)
c = 1023 >> 3; // c is 127 (10bit to 7bit ;)

There's an excellent thread in the forum that discusses bitoperations:
http://www.midibox.org/forum/index.php?topic=6981.0
If this is not enough, you could search for ASM optimized custom functions. You'll find some in
code examples of TK, the ACSensorizer and a lot of PIC-Specialized Webpages – or of course the
forum.
If that still is not enough or you have no time and a lot of processing power / space available on
your PIC, you can include the libsdcc library:

if multiplications, divisions, pointer operations, etc. are used in the .c code, the linker may fail
due to missing functions, which are part of the libsdcc.lib library. The common library for pic16
derivatives is not compatible to MIOS, therefore I've created a special one which can be
downloaded from here. Read the README.txt file for further details. TK on the C-Page

C Functions

MIOS_*_SRSet and _SRGet Functions refer to the pins in Little-Endian order, so for example:

MIOS_DOUT_SRSet(1, 00000001) Will set the 1st pin (aka Pin 0)…. or
MIOS_DOUT_SRSet(1, 01000000) Will set the 7th pin (aka Pin 6)

C Optimizations

How to mix C and ASM
Compiled C Code Size

http://www.midibox.org/forum/index.php?topic=6981.0
http://wiki.midibox.org/doku.php?id=acsensorizer
http://www.ucapps.de/mios/mios_libsdcc_v2_5_0.zip
http://www.ucapps.de/mios_c.html
http://en.wikipedia.org/wiki/Endianness
http://wiki.midibox.org/doku.php?id=how_to_mix_c_and_asm
http://wiki.midibox.org/doku.php?id=compiled_c_code_size

Last
update:
2006/11/19
07:51

c_tips_and_tricks_for_pic_programming http://wiki.midibox.org/doku.php?id=c_tips_and_tricks_for_pic_programming&rev=1163912874

http://wiki.midibox.org/ Printed on 2024/04/29 20:11

C Variables

Declaring a variable as type 'const' will cause the compiler to store the variable in the PIC's
program flash memory, not the SRAM.

Adding the keyword 'volatile' to a variable is a good idea when this variable can be changed or
altered outside the sourcefile that declared this variable.

SDCC Bugs/Workarounds

Some of these bugs have first been described in a german thread in the forum.

Array Access

Sometimes the transfer of an array between modules does not work properly, e.g. file 1:

unsigned char MIDIValues[8];

file 2:

MIOS_MIDI_TxBufferPut(MIDIValues[1]);

Instead, you need to do something like

unsigned char value = MIDIValues[1]; //explicit temp variable
MIOS_MIDI_TxBufferPut(value);

Large Arrays

Arrays with more than 256 elements will produce compile (in fact linker) errors:

unsigned char myArray[256]; // will work
unsigned char myArray[257]; // will not be linked!

unsigned char myArray[64][4]; // will work

http://en.wikipedia.org/wiki/Variable
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Static_random_access_memory
http://en.wikipedia.org/wiki/Volatile_variable
http://en.wikipedia.org/wiki/Variable
http://www.midibox.org/forum/index.php?topic=7463.msg50464#msg50464

2024/04/29 20:11 3/4 Arithmetic Calculations

MIDIbox - http://wiki.midibox.org/

unsigned char myArray[64][5]; // will not be linked!

Thanks to Thomas for testing some workarounds with multiple single-dimensional arrays.

Bit Copy Operations

There is potential trouble with bit copy operations (See this posting). Instead of

 app_flags.SRAM_CARD_STATUS = PORTEbits.RE2;

you should use

 if(PORTEbits.RE2){
 app_flags.SRAM_CARD_STATUS = 1;
 }else{
 app_flags.SRAM_CARD_STATUS = ;
 }

It is less elegant, but it works safely.

Parenthesis

Always use parenthesis around expressions like

myarray[a+b];

instead use

myarray[(a+b)];

Preprocessor #ifs

Avoid #ifdef and #if preprocessor-statements wrapped around declarations and function prototypes.
Even if the preprocessor's #if statement is true (eg defined as '1'), any access to it's vars and
functions from outside these wrapped statements produce a compile-warning:

#define TEST 1

#if TEST

http://www.midibox.org/forum/index.php?topic=6814.msg43501#msg43501
http://www.midibox.org/forum/index.php?topic=7925.msg54675#msg54675

Last
update:
2006/11/19
07:51

c_tips_and_tricks_for_pic_programming http://wiki.midibox.org/doku.php?id=c_tips_and_tricks_for_pic_programming&rev=1163912874

http://wiki.midibox.org/ Printed on 2024/04/29 20:11

 unsigned char testvar;
#endif /* TEST */

void testfunction(void) {
 unsigned char c = testvar + 1; // access to testvar produces compiler
error!
}

Zero Compare

Avoid comparisons of unsigned char with , e.g.

unsigned char i;
 for (i = ; i < ; i+ü) {
 //body
 }

0 could be a constant that was defined using #define, e.g. the number of motorized faders. But you
have no motorized faders… The main problem consists in the fact that your code depends on what
else is done around the comparison or in the body. This provokes completely erratic behaviour.

From:
http://wiki.midibox.org/ - MIDIbox

Permanent link:
http://wiki.midibox.org/doku.php?id=c_tips_and_tricks_for_pic_programming&rev=1163912874

Last update: 2006/11/19 07:51

http://wiki.midibox.org/
http://wiki.midibox.org/doku.php?id=c_tips_and_tricks_for_pic_programming&rev=1163912874

	Arithmetic Calculations
	C Functions
	C Optimizations
	C Variables
	SDCC Bugs/Workarounds
	Array Access
	Large Arrays
	Bit Copy Operations
	Parenthesis
	Preprocessor #ifs
	Zero Compare

